Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 244, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735434

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS: Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS: Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS: In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Células-Tronco , Biomarcadores , Carcinogênese
3.
J Exp Clin Cancer Res ; 41(1): 139, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414102

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14-15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously. A subset of GBM stem-like cells (GSCs) may account for tumorigenicity, representing, through their pathways, the proper cellular target in the therapeutics of glioblastomas. GSCs cells are routinely enriched and expanded due to continuous exposure to specific growth factors, which might alter some of their intrinsic characteristic and hide therapeutically relevant traits. METHODS: By removing exogenous growth factors stimulation, here we isolated and characterized a subset of GSCs with a "mitogen-independent" phenotype (I-GSCs) from patient's tumor specimens. Differential side-by-side comparative functional and molecular analyses were performed either in vitro or in vivo on these cells versus their classical growth factor (GF)-dependent counterpart (D-GSCs) as well as their tissue of origin. This was performed to pinpoint the inherent GSCs' critical regulators, with particular emphasis on those involved in spreading and tumorigenic potential. Transcriptomic fingerprints were pointed out by ANOVA with Benjamini-Hochberg False Discovery Rate (FDR) and association of copy number alterations or somatic mutations was determined by comparing each subgroup with a two-tailed Fisher's exact test. The combined effects of interacting in vitro and in vivo with two emerging GSCs' key regulators, such as Wnt5a and EphA2, were then predicted under in vivo experimental settings that are conducive to clinical applications. In vivo comparisons were carried out in mouse-human xenografts GBM model by a hierarchical linear model for repeated measurements and Dunnett's multiple comparison test with the distribution of survival compared by Kaplan-Meier method. RESULTS: Here, we assessed that a subset of GSCs from high-grade gliomas is self-sufficient in the activation of regulatory growth signaling. Furthermore, while constitutively present within the same GBM tissue, these GF-independent GSCs cells were endowed with a distinctive functional and molecular repertoire, defined by highly aggressive Wnt5aHigh/EphA2Low profile, as opposed to Wnt5aLow/EphA2High expression in sibling D-GSCs. Regardless of their GBM subtype of origin, I-GSCs, are endowed with a raised in vivo tumorigenic potential than matched D-GSCs, which were fast-growing ex-vivo but less lethal and invasive in vivo. Also, the malignant I-GSCs' transcriptomic fingerprint faithfully mirrored the original tumor, bringing into evidence key regulators of invasiveness, angiogenesis and immuno-modulators, which became candidates for glioma diagnostic/prognostic markers and therapeutic targets. Particularly, simultaneously counteracting the activity of the tissue invasive mediator Wnt5a and EphA2 tyrosine kinase receptor addictively hindered GSCs' tumorigenic and invasive ability, thus increasing survival. CONCLUSION: We show how the preservation of a mitogen-independent phenotype in GSCs plays a central role in determining the exacerbated tumorigenic and high mobility features distinctive of GBM. The exploitation of the I-GSCs' peculiar features shown here offers new ways to identify novel, GSCs-specific effectors, whose modulation can be used in order to identify novel, potential molecular therapeutic targets. Furthermore, we show how the combined use of PepA, the anti-Wnt5a drug, and of ephrinA1-Fc to can hinder GSCs' lethality in a clinically relevant xenogeneic in vivo model thus being conducive to perspective, novel combinatorial clinical application.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Mitógenos/metabolismo , Mitógenos/farmacologia , Mitógenos/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
4.
Front Cell Dev Biol ; 10: 1107881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684422

RESUMO

The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is widely expressed in the central and peripheral nervous systems. This receptor is implicated in both brain development and adult neurogenesis thanks to its ability to mediate acetylcholine stimulus (Ach). Copy number variations (CNVs) of CHRNA7 gene have been identified in humans and are genetically linked to cognitive impairments associated with multiple disorders, including schizophrenia, bipolar disorder, epilepsy, Alzheimer's disease, and others. Currently, α7 receptor analysis has been commonly performed in animal models due to the impossibility of direct investigation of the living human brain. But the use of model systems has shown that there are very large differences between humans and mice when researchers must study the CNVs and, in particular, the CNV of chromosome 15q13.3 where the CHRNA7 gene is present. In fact, human beings present genomic alterations as well as the presence of genes of recent origin that are not present in other model systems as well as they show a very heterogeneous symptomatology that is associated with both their genetic background and the environment where they live. To date, the induced pluripotent stem cells, obtained from patients carrying CNV in CHRNA7 gene, are a good in vitro model for studying the association of the α7 receptor to human diseases. In this review, we will outline the current state of hiPSCs technology applications in neurological diseases caused by CNVs in CHRNA7 gene. Furthermore, we will discuss some weaknesses that emerge from the overall analysis of the published articles.

5.
Adv Exp Med Biol ; 1330: 95-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339032

RESUMO

Ovarian Cancer is one of the most lethal and widespread gynecological malignancies. It is the seventh leading cause of all cancer deaths worldwide. High-Grade Serous Cancer (HGSC), the most commonly occurring subtype, alone contributes to 70% of all ovarian cancer deaths. This is mainly attributed to the complete lack of symptoms during the early stages of the disease and absence of an early diagnostic marker.PAX8 is emerging as an important histological marker for most of the epithelial ovarian cancers, as it is expressed in about 90% of malignant ovarian cancers, specifically in HGSC. PAX8 is a member of the Paired-Box gene family (PAX1-9) of transcription factors whose expression is tightly controlled temporally and spatially. The PAX genes are well known for their role in embryonic development and their expression continues to persist in some adult tissues. PAX8 is required for the normal development of Müllerian duct that includes Fallopian tube, uterus, cervix, and upper part of vagina. In adults, it is expressed in the Fallopian tube and uterine epithelium and not in the ovarian epithelium. Considering the recent studies that predict the events preceding the tumorigenesis of HGSC from the Fallopian tube, PAX8 appears to have an important role in the development of ovarian cancer.In this chapter, we review some of the published findings to highlight the significance of PAX8 as an important marker and an emerging player in the pathogenesis of ovarian cancer. We also discuss regarding the future perspectives of PAX8 wherein it could contribute to the betterment of ovarian cancer diagnosis and treatment.


Assuntos
Neoplasias Ovarianas , Adulto , Carcinoma Epitelial do Ovário , Tubas Uterinas , Feminino , Humanos , Gradação de Tumores , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Fator de Transcrição PAX8/genética
6.
J Exp Clin Cancer Res ; 39(1): 285, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317591

RESUMO

BACKGROUND: Colorectal cancer (CRC) harboring BRAFV600E mutation exhibits low response to conventional therapy and poorest prognosis. Due to the emerging correlation between gut microbiota and CRC carcinogenesis, we investigated in serrated BRAFV600E cases the existence of a peculiar fecal microbial fingerprint and specific bacterial markers, which might represent a tool for the development of more effective clinical strategies. METHODS: By injecting human CRC stem-like cells isolated from BRAFV600E patients in immunocompromised mice, we described a new xenogeneic model of this subtype of CRC. By performing bacterial 16S rRNA sequencing, the fecal microbiota profile was then investigated either in CRC-carrying mice or in a cohort of human CRC subjects. The microbial communities' functional profile was also predicted. Data were compared with Mann-Whitney U, Welch's t-test for unequal variances and Kruskal-Wallis test with Benjamini-Hochberg false discovery rate (FDR) correction, extracted as potential BRAF class biomarkers and selected as model features. The obtained mean test prediction scores were subjected to Receiver Operating characteristic (ROC) analysis. To discriminate the BRAF status, a Random Forest classifier (RF) was employed. RESULTS: A specific microbial signature distinctive for BRAF status emerged, being the BRAF-mutated cases closer to healthy controls than BRAF wild-type counterpart. In agreement, a considerable score of correlation was also pointed out between bacteria abundance from BRAF-mutated cases and the level of markers distinctive of BRAFV600E pathway, including those involved in inflammation, innate immune response and epithelial-mesenchymal transition. We provide evidence that two candidate bacterial markers, Prevotella enoeca and Ruthenibacterium lactatiformans, more abundant in BRAFV600E and BRAF wild-type subjects respectively, emerged as single factors with the best performance in distinguishing BRAF status (AUROC = 0.72 and 0.74, respectively, 95% confidence interval). Furthermore, the combination of the 10 differentially represented microorganisms between the two groups improved performance in discriminating serrated CRC driven by BRAF mutation from BRAF wild-type CRC cases (AUROC = 0.85, 95% confidence interval, 0.69-1.01). CONCLUSION: Overall, our results suggest that BRAFV600E mutation itself drives a distinctive gut microbiota signature and provide predictive CRC-associated bacterial biomarkers able to discriminate BRAF status in CRC patients and, thus, useful to devise non-invasive patient-selective diagnostic strategies and patient-tailored optimized therapies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Fezes/microbiologia , Microbioma Gastrointestinal , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517089

RESUMO

Long non-coding RNAs (lncRNAs) are increasingly being identified as crucial regulators in pathologies like cancer. High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer (OC), one of the most lethal gynecological malignancies. LncRNAs, especially in cancers such as HGSC, could play a valuable role in diagnosis and even therapy. From RNA-sequencing analysis performed between an OC cell line, SKOV3, and a Fallopian Tube (FT) cell line, FT194, an important long non-coding RNA, HAND2 Anti sense RNA 1 (HAND2-AS1), was observed to be significantly downregulated in OCs when compared to FT. Its downregulation in HGSC was validated in different datasets and in a panel of HGSC cell lines. Furthermore, this study shows that the downregulation of HAND2-AS1 is caused by promoter hypermethylation in HGSC and behaves as a tumor suppressor in HGSC cell lines. Since therapeutic relevance is of key importance in HGSC research, for the first time, HAND2-AS1 upregulation was demonstrated to be one of the mechanisms through which HDAC inhibitor Panobinostat could be used in a strategy to increase HGSC cells' sensitivity to chemotherapeutic agents currently used in clinical trials. To unravel the mechanism by which HAND2-AS1 exerts its role, an in silico mRNA network was constructed using mRNAs whose expressions were positively and negatively correlated with this lncRNA in HGSC. Finally, a putative ceRNA network with possible miRNA targets of HAND2-AS1 and their mRNA targets was constructed, and the enriched Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified.


Assuntos
Cistadenocarcinoma Seroso/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Ovarianas/genética , Interferência de RNA , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Cistadenocarcinoma Seroso/patologia , Metilação de DNA , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , MicroRNAs/genética , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas
8.
Cancers (Basel) ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842477

RESUMO

High-Grade Serous Ovarian Carcinoma (HGSC) is the most incidental and lethal subtype of epithelial ovarian cancer (EOC) with a high mortality rate of nearly 65%. Recent findings aimed at understanding the pathogenesis of HGSC have attributed its principal source as the Fallopian Tube (FT). To further comprehend the exact mechanism of carcinogenesis, which is still less known, we performed a transcriptome analysis comparing FT and HGSC. Our study aims at exploring new players involved in the development of HGSC from FT, along with their signaling network, and we chose to focus on non-coding RNAs. Non-coding RNAs (ncRNAs) are increasingly observed to be the major regulators of several cellular processes and could have key functions as biological markers, as well as even a therapeutic approach. The most physiologically relevant and significantly dysregulated non-coding RNAs were identified bioinformatically. After analyzing the trend in HGSC and other cancers, MAGI2-AS3 was observed to be an important player in EOC. We assessed its tumor-suppressive role in EOC by means of various assays. Further, we mapped its signaling pathway using its role as a miRNA sponge to predict the miRNAs binding to MAGI2AS3 and showed it experimentally. We conclude that MAGI2-AS3 acts as a tumor suppressor in EOC, specifically in HGSC by sponging miR-15-5p, miR-374a-5p and miR-374b-5p, and altering downstream signaling of certain mRNAs through a ceRNA network.

9.
Cancer Cell Int ; 19: 303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31832016

RESUMO

BACKGROUND: Ovarian cancer is the third most common cause of death among gynecologic malignancies worldwide. Understanding the biology and molecular pathogenesis of ovarian epithelial tumors is key to developing improved prognostic indicators and effective therapies. We aimed to determine the effects of PAX8 expression on the migrative, adhesive and survival capabilities of high-grade serous carcinoma cells. METHODS: PAX8 depleted Fallopian tube secretory cells and ovarian cancer cells were generated using short interfering siRNA. Anoikis resistance, cell migration and adhesion properties of PAX8 silenced cells were analyzed by means of specific assays. Chromatin immunoprecipitation (ChIP) was carried out using a PAX8 polyclonal antibody to demonstrate that PAX8 is able to bind to the 5'-flanking region of the ITGB3 gene positively regulating its expression. RESULTS: Here, we report that RNAi silencing of PAX8 sensitizes non-adherent cancer cells to anoikis and affects their tumorigenic properties. We show that PAX8 plays a critical role in migration and adhesion of both Fallopian tube secretory epithelial cells and ovarian cancer cells. Inhibition of PAX8 gene expression reduces the ability of ovarian cancer cells to migrate and adhere to the ECM and specifically to fibronectin and/or collagen substrates. Moreover, loss of PAX8 strongly reduces ITGB3 expression and consequently the correct expression of the αvß3 heterodimer on the plasma membrane. CONCLUSIONS: Our results demonstrate that PAX8 modulates the interaction of tumor cells with the extracellular matrix (ECM). Notably, we also highlight a novel pathway downstream this transcription factor. Overall, PAX8 could be a potential therapeutic target for high-grade serous carcinoma.

10.
Laryngoscope ; 128(10): E339-E345, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29570813

RESUMO

OBJECTIVES: Among the predisposing factors implicated in the immune response to airway bacterial infections, genetic variations of the bitter taste receptor TAS2R38, which is expressed in the cilia of the human sinonasal epithelial cells, seem to be associated with susceptibility to chronic rhinosinusitis (CRS) and in vitro biofilm formation. Polymorphisms in TAS2R38 generate two common haplotypes: the nonfunctional AVI (Alanine, Valine, Isoleucine) and the functional PAV (Proline, Alanine, Valine) alleles, with the latter protecting against gram-negative sinonasal infections. The aim of this study is to investigate for the first time the relevance of TAS2R38 genetic variants in the susceptibility to bacterial infections associated with in vivo biofilm formation in chronic rhinosinusitis with nasal polyps (CRSwNP) patients. STUDY DESIGN: A prospective study on 100 adult patients undergoing functional endoscopic sinus surgery (FESS) for CRSwNP. METHODS: Propylthiouracile (PROP) testing and TAS2R38 genotyping were applied to characterize patients for receptor functionality. Sinonasal mucosa samples were processed for microbiological examination and biofilm detection. RESULTS: The nonfunctional genotype is more frequent among CRS patients than in the general population (25% vs. 18.4%, P = 0.034). Airway gram-negative infections are primarily associated with the AVI haplotype (88.9% vs. 11.1% PAV/PAV-functional genotype, P = 0.023). Biofilm formation is prevalent in CRS patients with the AVI nontaster phenotype (62.5% vs. 33.3% PAV taster or supertaster phenotype, P = 0.05). CONCLUSION: Our findings confirm an inverse correlation between TAS2R38 functionality and gram-negative infections in Italian patients with CRSwNP. In addition, for the first time we demonstrated a relationship between in vivo microbial biofilm and TAS2R38 receptor variants. LEVEL OF EVIDENCE: 2b. Laryngoscope, 128:E339-E345, 2018.


Assuntos
Infecções por Bactérias Gram-Negativas/genética , Pólipos Nasais/genética , Receptores Acoplados a Proteínas G/genética , Rinite/genética , Sinusite/genética , Adulto , Biofilmes/crescimento & desenvolvimento , Doença Crônica , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Genótipo , Infecções por Bactérias Gram-Negativas/complicações , Humanos , Itália , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Pólipos Nasais/complicações , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Rinite/complicações , Sinusite/complicações , Paladar/genética
11.
Oncotarget ; 7(27): 41929-41947, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27259239

RESUMO

Understanding the biology and molecular pathogenesis of ovarian epithelial cancer (EOC) is key to developing improved diagnostic and prognostic indicators and effective therapies. Although research has traditionally focused on the hypothesis that high-grade serous carcinoma (HGSC) arises from the ovarian surface epithelium (OSE), recent studies suggest that additional sites of origin exist and a substantial proportion of cases may arise from precursor lesions located in the Fallopian tubal epithelium (FTE). In FTE cells, the transcription factor PAX8 is a marker of the secretory cell lineage and its expression is retained in 96% of EOC. We have recently reported that PAX8 is involved in the tumorigenic phenotype of ovarian cancer cells. In this study, to uncover genes and pathways downstream of PAX8 involved in ovarian carcinoma we have determined the molecular profiles of ovarian cancer cells and in parallel of Fallopian tube epithelial cells by means of a silencing approach followed by an RNA-seq analysis. Interestingly, we highlighted the involvement of pathways like WNT signaling, epithelial-mesenchymal transition, p53 and apoptosis. We believe that our analysis has led to the identification of candidate genes and pathways regulated by PAX8 that could be additional targets for the therapy of ovarian carcinoma.


Assuntos
Células Epiteliais/metabolismo , Predisposição Genética para Doença/genética , Fator de Transcrição PAX8/genética , Transdução de Sinais/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/citologia , Tubas Uterinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fator de Transcrição PAX8/metabolismo , Interferência de RNA
12.
APMIS ; 124(6): 516-21, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27004836

RESUMO

Enterobacter aerogenes has recently emerged as an important hospital pathogen. In this study, we showed the emergence of E. aerogenes isolates carrying the blaKPC gene in patients colonized by carbapenem-resistant Klebsiella pneumoniae strains. Two multiresistant E. aerogenes isolates were recovered from bronchial aspirates of two patients hospitalized in the Intensive Care Unit at the "Santa Maria della Scaletta" Hospital, Imola. The antimicrobial susceptibility test showed the high resistance to carbapenems and double-disk synergy test confirmed the phenotype of KPC and AmpC production. Other investigation revealed that ESBL and blaKPC genes were carried on the conjugative pKpQIL plasmid. This is a relevant report in Italy that describes a nosocomial infection due to the production of KPC beta-lactamases by an E. aerogenes isolate in patients previously colonized by K. pneumoniae carbapenem-resistant. In conclusion, it's necessary a continuous monitoring of multidrug-resistant strains for the detection of any KPC-producing bacteria that could expand the circulation of carbapenem-resistant pathogens.


Assuntos
Proteínas de Bactérias/genética , Infecção Hospitalar/microbiologia , Enterobacter aerogenes/enzimologia , Enterobacter aerogenes/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Unidades de Terapia Intensiva , beta-Lactamases/genética , Antibacterianos/farmacologia , Brônquios/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/genética , Hospitais , Humanos , Itália , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Plasmídeos/análise , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA